Applying Refractometers to the on-line Measurement of Green Liquor Density

Western Canada BLRBAC
Spring 2014

C.A. Vossberg
Agenda:

• Background information

• Refractometer basic principles

• Key issues facing green liquor refractometer measurement

• Experimental installation review
Green Liquor Refractometers:

- On-line measurement of green liquor density or (TTA) at two stages in the process:
 - Outlet of Dissolving Tank (focus of presentation)
 - After Clarifier
- Allows real-time control of the green liquor dilution to meet the target TTA
- Benefits:
 - Indication (and prevention) of excessive green liquor density and impending crystallization
 - Improved white liquor quality
 - Consistent black liquor solids
 - Maintain a desired process solution
 - Accurate Process Control
 - Economical Operation
 - Decreased Offline Testing
Measurement Principle

R.I. (sapphire) = 1.760

R.I. (water 20°C) = 1.33335

If the angle of Light "B" = 30°, then

\[
\frac{(1.760) \sin 30°}{1.33335} = 0.6600
\]

\[
\theta_r = \sin^{-1}(0.6600) = 41.30°
\]

Critical Angle is when \(\theta_r = 90° \)

\[
\frac{(1.760) \sin \theta_i}{(1.33335) \sin 90°} = 0.7576
\]

\[
\theta_i = \sin^{-1}(0.7576) = 49.25°
\]

http://interactagram.com/physics/optics/refraction/
Measurement Principle
Measurement Principle

GREEN LIQUOR T.T.A.

<table>
<thead>
<tr>
<th>Electron Machine</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 10/20/2000</td>
<td>6.25</td>
<td>1.3692</td>
<td>8.2</td>
<td>1.3787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test: G.L. TTA</td>
<td>7.3</td>
<td>1.3741</td>
<td>8.5</td>
<td>1.3803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem:</td>
<td>7.8</td>
<td>1.3766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instr: ABBE</td>
<td>8</td>
<td>1.3777</td>
<td>8.1</td>
<td>1.3782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3825</td>
<td></td>
</tr>
</tbody>
</table>

PERCENT T.T.A.

REFRACTIVE INDEX

- 1.369
- 1.370
- 1.371
- 1.372
- 1.373
- 1.374
- 1.375
- 1.376
- 1.377
- 1.378
- 1.379
- 1.380
- 1.381
- 1.382

PERCENT T.T.A.

- 6
- 6.25
- 6.5
- 6.75
- 7
- 7.25
- 7.5
- 7.75
- 8
- 8.25
- 8.5

Graph

- Plot showing the relationship between percent T.T.A. and refractive index.

Electron Machine

- Date: 10/20/2000
- Test: G.L. TTA
- Chem:
- Instr: ABBE
- 1.3825
Key Issue facing Refractometer Green Liquor Measurement:

- Optical coating
- Duration of on-line measurement before optical coating occurs
- Maintenance of cleaning method
- Thermal changes
An optical coating problem associated with green liquor has been an on-going problem resulting in the adaptation of several different cleaning methods:

- **Steam**
 - Inadequate scale removal (may accelerate scaling)
 - Thermal shock
 - Relatively low pressure over process

- **Mechanical removal**
 - Adequate scale removal
 - Frequent service intervals

- **Chemical removal**
 - Adequate scale removal
 - Frequent service intervals

- **High-pressure mill water**
 - Adequate scale removal
 - Poor water quality
 - Thermal change
 - Frequent maintenance intervals
Aggressive scaling can immediately begin occurring after an optical cleaning without time for an accurate measurement:

- Declining industry wide
- Greater attention to green liquor control
 - Reduce variation of TTA
 - You help us we help you
 - Adequate dissolving tank mixing
 - Anti-scaling additives
 - Reducing thermal changes
High maintenance equipment leads to an unsuccessful installation:

- Expensive
- Labor intensive
- Unreliable
- Leads to operator distrust
- Difficult for real-time control
Thermal Changes:

Thermal changes have been observed to aggravate the scaling and coating issues associated with green liquor resulting in increased refractometer maintenance:

- **Prism shock**
 - Steam purge can increase coating
 - Prism cracking
 - Hotter than process
 - Colder than process

- **Cleaning nozzle fouling**
 - Temperature change may contribute to scaling
 - Complete nozzle blockage
 - Water stream deflection
Green Liquor
Experimental Installations:

• Green Liquor Dissolving Tank:
 • Four different installations
 • Custom install locations tailored to individual mill requirements
 • Removable high pressure cleaner adapter
 • Heated water purge system
 • One experimental cleaning nozzle flushing system
 • Cleaning methods
 • High pressure cleaner supplied with heated de-mineralized water
 • Approximately 1500psi
 • Water temperature 160F
 • Boiler Feed Water
 • Approximately 800psi
 • Water temperature 160-200F
 • Significant incremental improvements
Installation 1

Three different dissolving tanks.

- Components:
 - (3) MPR E-Scan with High Pressure Cleaning Systems
 - Installed in dissolving tank green liquor recirculation 2” line
 - All units use smelt spout cooling water @ ~160F with drain solenoid to ensure hot water supply
 - Removable high pressure nozzles
 - 9 months ago changed from normal mill water to heated water

- Results with heated water:
 - Before: monthly service interval of sensing head due to cracking prisms and nozzle fouling
 - Now:
 - Using instrument for automated control
 - Sensing head service interval greatly enhanced
 - Nozzle service has been extended marginally

- Pro/Con with install:
 - Ease of isolation for sensor maintenance
 - Operations must insure clean recirculation line
 - Improper cleaning of recirculation line can result in damage to sensing head
Two different dissolving tanks, one boiler.

- Components:
 - (2) MPR E-Scan with High Pressure Cleaning Systems
 - Installed in dissolving tank green liquor recirculation 2” line
 - One tank in service at a time
 - Second tank in weak wash clean
 - Removable high pressure nozzles

- Pro/Con with install:
 - Ease of isolation for sensor maintenance
 - Must have two dissolving tanks
 - Operations must insure clean recirculation line
Installation 3

Three dissolving tanks with two discharge lines and dedicated weak wash supply

- Components:
 - (6) MPR E-Scan
 - Installed in dissolving tank green liquor 6” discharge lines
 - All units use high pressure boiler feed water with drain solenoid to ensure hot water supply
 - Removable high pressure nozzles

- Results:
 - Using instrument for automated control
 - Systems in operation for 6 months with no major issues or servicing

- Pros/Cons with install:
 - Simple system
 - Direct product sampling
 - Low maintenance
 - Availability of high-pressure boiler feed water and associated piping
 - Low risk of green liquor intrusion into boiler feed water
Installation 4

• One dissolving tank
• Components:
 ● (2) MPR E-Scan with High Pressure Cleaning Systems
 ● Both units use “de-min” water @ ~160F with drain solenoid to ensure hot water supply
 ● Removable high pressure nozzles
 ● Installed in 8” dissolving tank green liquor discharge / weak wash supply lines
 ● One unit has automated vinegar nozzle flushing system
Installation 4

- **Results:**
 - Before: (1) year sensing head service interval w/purge every 7 minutes for 10 seconds
 - Using normal mill water
 - Replacing nozzles monthly
 - Now:
 - Using instrument for automated control
 - Both purge systems on the heated water
 - Possibly (2+) year sensing head service interval w/purge every 12 minutes for 5 seconds
 - Over 6 months on same nozzle
 - Automated vinegar nozzle flushing
 - 6 month run time
 - Improvements still to be determined
 - May increase service interval of nozzle
 - Enough to justify added maintenance and complexity of system?
Installation 4
Installation 4
Experimental Installations

Conclusion

- Optical coating
 - Adequately removed with heated high pressure water
- Duration of on-line measurement before scaling occurs
 - Increased with less green liquor TTA variation
- Maintenance
 - Heated water
 - Reduction in scaling aggravation
 - Reduced prism shock
 - Reduced issues with cleaning nozzle fouling
 - Refractometer sensing heads installed on green liquor discharge / weak wash supply
 - Feasible when sensing head and cleaning nozzle maintenance is prolonged
 - Alleviates need for separate cleaning of recirculation line
 - Vinegar flush may not be beneficial enough to justify added maintenance
- Thermal changes
 - High pressure water nearly same temperature as green liquor
 - Drain solenoid valve
Green Liquor Refractometer
Summary

- Incremental improvements to refractometer cleaning system
 - Realistic option for on-line green liquor measurement if pipeline scaling allows
 - Accurate process control
 - Low installation cost
 - Reduced maintenance requirements

- Increased green liquor control
 - Safer recovery boiler operation
 - Overall improvement to Kraft process
 - Reduced standard deviation of green liquor variability
 - Better consistency leads to less coating and scaling
Electron Machine Corporation

C.A. Vossberg (President)
Cell (352)-406-1352
cal@electronmachine.com

Brad Osborne (Sales/Marketing Manager)
Cell (352)-267-0118
brad@electronmachine.com